Beta Roughness Model¶
This tutorial describes how to incorporate the general roughness model for crystal truncation rod data after Robinson [ROB86].
To use this roughness model you will need the following:
Data file that includes L-value of nearest Bragg peak (LB) and distance in reciprocal lattice units between adjacent Bragg peaks (dL) for each data point. If dL is the same for all Bragg peaks on a given rod, you may use the same LB for all.
# Sample data file with Bragg peak position and spacing # H K L I Ierr LB dL 0 0 1.0 0 0 3 3 0 0 1.1 0 0 3 3 0 0 1.2 0 0 3 3 0 0 1.3 0 0 3 3 0 0 1.4 0 0 3 3 0 0 1.5 0 0 3 3 0 0 1.6 0 0 3 3
SXRD model script modified to include the beta parameter as a user variable, and roughness in the structure factor calculation. Add/replace the following code in the model script shown at Surface X-diffraction tutorial
# 3.a Define beta for roughness model rgh=UserVars() rgh.new_var('beta', 0.0) # 9 Define the Sim function def Sim(data): I = [] beta = rgh.beta #9.a loop through the data sets for data_set in data: # 9.b create all the h,k,l,LB,dL values for the rod (data_set) h = data_set.extra_data['h'] k = data_set.extra_data['k'] l = data_set.x LB = data_set.extra_data['LB'] dL = data_set.extra_data['dL'] # 9.c. calculate roughness using beta model rough = (1-beta)/((1-beta)**2 + 4*beta*np.sin(np.pi*(l - LB)/dL)**2)**0.5 # 9.d. Calculate the structure factor f = rough*sample.calc_f(h, k, l) # 9.e Calculate |F| i = abs(f)**2 # 9.f Append the calculated intensity to the list I I.append(i) return I
In your parameter grid, select an empty row, right click, and select
References¶
- ROB86
ROBINSON, I., 1986. CRYSTAL TRUNCATION RODS AND SURFACE-ROUGHNESS. Physical Review B 33, 3830-3836.